Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications (2024)

1. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel J-F. Ulcerative colitis. Lancet (2017) 389(10080):1756–70. doi: 10.1016/s0140-6736(16)32126-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Jairath V, Feagan BG. Global burden of inflammatory bowel disease. Lancet Gastroenterol Hepatol (2020) 5(1):2–3. doi: 10.1016/s2468-1253(19)30358-9 [PubMed] [CrossRef] [Google Scholar]

3. Amoroso C, Perillo F, Strati F, Fantini MC, Caprioli F, Facciotti F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells (2020) 9(5):1234. doi: 10.3390/cells9051234 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

4. Caldera F, Hillman L, Saha S, Wald A, Grimes I, Zhang Y, et al.. Immunogenicity of high dose influenza vaccine for patients with inflammatory bowel disease on anti-tnf monotherapy: A randomized clinical trial. Inflammation Bowel Dis (2020) 26(4):593–602. doi: 10.1093/ibd/izz164 [PubMed] [CrossRef] [Google Scholar]

5. Ho SM, Lewis JD, Mayer EA, Plevy SE, Chuang E, Rappaport SM, et al.. Challenges in ibd research: Environmental triggers. Inflammation Bowel Dis (2019) 25(Suppl 2):S13–23. doi: 10.1093/ibd/izz076 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology (2015) 149(5):1163–76.e2. doi: 10.1053/j.gastro.2015.08.001 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Jordi SBU, Lang BM, Auschra B, von Kanel R, Biedermann L, Greuter T, et al.. Depressive symptoms predict clinical recurrence of inflammatory bowel disease. Inflammation Bowel Dis (2022) 28(4):560–71. doi: 10.1093/ibd/izab136 [PubMed] [CrossRef] [Google Scholar]

8. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al.. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet (2017) 390(10114):2769–78. doi: 10.1016/s0140-6736(17)32448-0 [PubMed] [CrossRef] [Google Scholar]

9. Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, et al.. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific crohn's and colitis epidemiology study. Gastroenterology (2013) 145(1):158–65.e2. doi: 10.1053/j.gastro.2013.04.007 [PubMed] [CrossRef] [Google Scholar]

10. Powell N, Walker MM, Talley NJ. The mucosal immune system: Master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol (2017) 14(3):143–59. doi: 10.1038/nrgastro.2016.191 [PubMed] [CrossRef] [Google Scholar]

11. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al.. Postnatal microbial colonization programs the hypothalamic-Pituitary-Adrenal system for stress response in mice. J Physiol (2004) 558(Pt 1):263–75. doi: 10.1113/jphysiol.2004.063388 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Skonieczna-Zydecka K, Marlicz W, Misera A, Koulaouzidis A, Loniewski I. Microbiome-the missing link in the gut-brain axis: Focus on its role in gastrointestinal and mental health. J Clin Med (2018) 7(12):521. doi: 10.3390/jcm7120521 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses. Nat Commun (2017) 8(1):1784. doi: 10.1038/s41467-017-01973-8 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, et al.. Potential roles of gut microbiome and metabolites in modulating als in mice. Nature (2019) 572(7770):474–80. doi: 10.1038/s41586-019-1443-5 [PubMed] [CrossRef] [Google Scholar]

15. Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J, et al.. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature (2020) 582(7810):89–94. doi: 10.1038/s41586-020-2288-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Chen T, Wang R, Duan Z, Yuan X, Ding Y, Feng Z, et al.. Akkermansia muciniphila protects against psychological disorder-induced gut microbiota-mediated colonic mucosal barrier damage and aggravation of colitis. Front Cell Infect Microbiol (2021) 11:723856. doi: 10.3389/fcimb.2021.723856 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Gao X, Cao Q, Cheng Y, Zhao D, Wang Z, Yang H, et al.. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci U.S.A. (2018) 115(13):E2960–E9. doi: 10.1073/pnas.1720696115 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Komoto M, Asada A, Ohshima Y, Miyanaga K, Morimoto H, Yasukawa T, et al.. Dextran sulfate sodium-induced colitis in C57bl/6j mice increases their susceptibility to chronic unpredictable mild stress that induces depressive-like behavior. Life Sci (2022) 289:120217. doi: 10.1016/j.lfs.2021.120217 [PubMed] [CrossRef] [Google Scholar]

19. Seifi M, Rodaway S, Rudolph U, Swinny JD. Gabaa receptor subtypes regulate stress-induced colon inflammation in mice. Gastroenterology (2018) 155(3):852–64.e3. doi: 10.1053/j.gastro.2018.05.033 [PubMed] [CrossRef] [Google Scholar]

20. Mikocka-Walus A, Pittet V, Rossel JB, von Kanel R, Swiss IBDCSG. Symptoms of depression and anxiety are independently associated with clinical recurrence of inflammatory bowel disease. Clin Gastroenterol Hepatol (2016) 14(6):829–35.e1. doi: 10.1016/j.cgh.2015.12.045 [PubMed] [CrossRef] [Google Scholar]

21. Sun Y, Li L, Xie R, Wang B, Jiang K, Cao H. Stress triggers flare of inflammatory bowel disease in children and adults. Front Pediatr (2019) 7:432. doi: 10.3389/fped.2019.00432 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Barberio B, Zamani M, Black CJ, Savarino EV, Ford AC. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol Hepatol (2021) 6(5):359–70. doi: 10.1016/s2468-1253(21)00014-5 [PubMed] [CrossRef] [Google Scholar]

23. Bernstein CN, Hitchon CA, Walld R, Bolton JM, Sareen J, Walker JR, et al.. Increased burden of psychiatric disorders in inflammatory bowel disease. Inflammation Bowel Dis (2019) 25(2):360–8. doi: 10.1093/ibd/izy235 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Neuendorf R, Harding A, Stello N, Hanes D, Wahbeh H. Depression and anxiety in patients with inflammatory bowel disease: A systematic review. J Psychosom Res (2016) 87:70–80. doi: 10.1016/j.jpsychores.2016.06.001 [PubMed] [CrossRef] [Google Scholar]

25. Dinan TG, Cryan JF. The microbiome-Gut-Brain axis in health and disease. Gastroenterol Clin North Am (2017) 46(1):77–89. doi: 10.1016/j.gtc.2016.09.007 [PubMed] [CrossRef] [Google Scholar]

26. Gracie DJ, Guthrie EA, Hamlin PJ, Ford AC. Bi-directionality of brain-gut interactions in patients with inflammatory bowel disease. Gastroenterology (2018) 154(6):1635–46.e3. doi: 10.1053/j.gastro.2018.01.027 [PubMed] [CrossRef] [Google Scholar]

27. Conti C, Rosa I, Zito L, Grossi L, Efthymakis K, Neri M, et al.. Influence of the covid-19 outbreak on disease activity and quality of life in inflammatory bowel disease patients. Front Psychiatry (2021) 12:664088. doi: 10.3389/fpsyt.2021.664088 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Mawdsley JE, Rampton DS. Psychological stress in ibd: New insights into pathogenic and therapeutic implications. Gut (2005) 54(10):1481–91. doi: 10.1136/gut.2005.064261 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Labanski A, Langhorst J, Engler H, Elsenbruch S. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology (2020) 111:104501. doi: 10.1016/j.psyneuen.2019.104501 [PubMed] [CrossRef] [Google Scholar]

30. Tsigos C, Chrousos GP. Hypothalamic-Pituitary-Adrenal axis, neuroendocrine factors and stress. J Psychosom Res (2002) 53(4):865–71. doi: 10.1016/s0022-3999(02)00429-4 [PubMed] [CrossRef] [Google Scholar]

31. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci (2009) 10(6):397–409. doi: 10.1038/nrn2647 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Tache Y, Larauche M, Yuan PQ, Million M. Brain and gut crf signaling: Biological actions and role in the gastrointestinal tract. Curr Mol Pharmacol (2018) 11(1):51–71. doi: 10.2174/1874467210666170224095741 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Li B, Lee C, Filler T, Hock A, Wu RY, Li Q, et al.. Inhibition of corticotropin-releasing hormone receptor 1 and activation of receptor 2 protect against colonic injury and promote epithelium repair. Sci Rep (2017) 7:46616. doi: 10.1038/srep46616 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Hill LT, Kidson SH, Michell WL. Corticotropin-releasing factor: A possible key to gut dysfunction in the critically ill. Nutrition (2013) 29(7-8):948–52. doi: 10.1016/j.nut.2012.12.023 [PubMed] [CrossRef] [Google Scholar]

35. Zheng PY, Feng BS, Oluwole C, Struiksma S, Chen X, Li P, et al.. Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. Gut (2009) 58(11):1473–9. doi: 10.1136/gut.2009.181701 [PubMed] [CrossRef] [Google Scholar]

36. Bauguil SC, Cousin B, Bour S, Casteilla L, Penicaud L, Carpéné C. Adipose tissue lymphocytes: Types and roles. J Physiol Biochem (2009) 65(4):423–36. doi: 10.1007/BF03185938 [PubMed] [CrossRef] [Google Scholar]

37. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, et al.. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut (2014) 63(8):1293–9. doi: 10.1136/gutjnl-2013-305690 [PubMed] [CrossRef] [Google Scholar]

38. Xu W, Lu J, Chen Y, Wang Z, Cao J, Dong Y. Impairment of crh in the intestinal mucosal epithelial barrier of pregnant bama miniature pig induced by restraint stress. Endocr J (2021) 68(4):485–502. doi: 10.1507/endocrj.EJ20-0332 [PubMed] [CrossRef] [Google Scholar]

39. Zheng G, Victor Fon G, Meixner W, Creekmore A, Zong Y, KD M, et al.. Chronic stress and intestinal barrier dysfunction: Glucocorticoid receptor and transcription repressor Hes1 regulate tight junction protein claudin-1 promoter. Sci Rep (2017) 7(1):4502. doi: 10.1038/s41598-017-04755-w [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Zong Y, Zhu S, Zhang S, Zheng G, Wiley JW, Hong S. Chronic stress and intestinal permeability: Lubiprostone regulates glucocorticoid receptor-mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human. Neurogastroenterol Motil (2019) 31(2):e13477. doi: 10.1111/nmo.13477 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Johnson JD, Barnard DF, Kulp AC, Mehta DM. Neuroendocrine regulation of brain cytokines after psychological stress. J Endocr Soc (2019) 3(7):1302–20. doi: 10.1210/js.2019-00053 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Goyal RK, Hirano I. The enteric nervous system. N Engl J Med (1996) 334(17):1106–15. doi: 10.1056/NEJM199604253341707 [PubMed] [CrossRef] [Google Scholar]

43. Barreau F, Salvador-Cartier C, Houdeau E, Bueno L, Fioramonti J. Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut (2008) 57(5):582–90. doi: 10.1136/gut.2007.126680 [PubMed] [CrossRef] [Google Scholar]

44. Gareau MG, Jury J, Perdue MH. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol (2007) 293(1):G198–203. doi: 10.1152/ajpgi.00392.2006 [PubMed] [CrossRef] [Google Scholar]

45. Villanacci V, Bassotti G, Nascimbeni R, Antonelli E, Cadei M, Fisogni S, et al.. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol Motil (2008) 20(9):1009–16. doi: 10.1111/j.1365-2982.2008.01146.x [PubMed] [CrossRef] [Google Scholar]

46. Bonaz B, Sinniger V, Pellissier S. Therapeutic potential of vagus nerve stimulation for inflammatory bowel diseases. Front Neurosci (2021) 15:650971. doi: 10.3389/fnins.2021.650971 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Eberhardson M, Hedin CRH, Carlson M, Tarnawski L, Levine YA, Olofsson PS. Towards improved control of inflammatory bowel disease. Scand J Immunol (2019) 89(3):e12745. doi: 10.1111/sji.12745 [PubMed] [CrossRef] [Google Scholar]

48. Meroni E, Stakenborg N, Gomez-Pinilla PJ, Stakenborg M, Aguilera-Lizarraga J, Florens M, et al.. Vagus nerve stimulation promotes epithelial proliferation and controls colon monocyte infiltration during dss-induced colitis. Front Med (Lausanne) (2021) 8:694268. doi: 10.3389/fmed.2021.694268 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Pellissier S, Dantzer C, Mondillon L, Trocme C, Gauchez AS, Ducros V, et al.. Relationship between vagal tone, cortisol, tnf-alpha, epinephrine and negative affects in crohn's disease and irritable bowel syndrome. PloS One (2014) 9(9):e105328. doi: 10.1371/journal.pone.0105328 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Teratani T, Mikami Y, Nakamoto N, Suzuki T, Harada Y, Okabayashi K, et al.. The liver-Brain-Gut neural arc maintains the treg cell niche in the gut. Nature (2020) 585(7826):591–6. doi: 10.1038/s41586-020-2425-3 [PubMed] [CrossRef] [Google Scholar]

51. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry (2018) 9:44. doi: 10.3389/fpsyt.2018.00044 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Kolacz J, Kovacic KK, Porges SW. Traumatic stress and the autonomic brain-gut connection in development: Polyvagal theory as an integrative framework for psychosocial and gastrointestinal pathology. Dev Psychobiol (2019) 61(5):796–809. doi: 10.1002/dev.21852 [PubMed] [CrossRef] [Google Scholar]

53. Hiles SA, Baker AL, de Malmanche T, Attia J. A meta-analysis of differences in il-6 and il-10 between people with and without depression: Exploring the causes of heterogeneity. Brain Behav Immun (2012) 26(7):1180–8. doi: 10.1016/j.bbi.2012.06.001 [PubMed] [CrossRef] [Google Scholar]

54. Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, et al.. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr Scand (2017) 135(5):373–87. doi: 10.1111/acps.12698 [PubMed] [CrossRef] [Google Scholar]

55. Gunterberg V, Simren M, Ohman L, Friberg P, Jones MP, Van Oudenhove L, et al.. Autonomic nervous system function predicts the inflammatory response over three years in newly diagnosed ulcerative colitis patients. Neurogastroenterol Motil (2016) 28(11):1655–62. doi: 10.1111/nmo.12865 [PubMed] [CrossRef] [Google Scholar]

56. Mikocka-Walus A, Knowles SR, Keefer L, Graff L. Controversies revisited: A systematic review of the comorbidity of depression and anxiety with inflammatory bowel diseases. Inflammation Bowel Dis (2016) 22(3):752–62. doi: 10.1097/MIB.0000000000000620 [PubMed] [CrossRef] [Google Scholar]

57. Abbott A. The inflamed mind: A radical new approach to depression. Nature (2018) 557(May 31 TN.7707):633–4. doi: 10.1038/d41586-018-05261-3 [CrossRef] [Google Scholar]

58. Lin YY, Chang CC, Huang CC, Tzeng NS, Kao YC, Chang HA. Efficacy and neurophysiological predictors of treatment response of adjunct bifrontal transcranial direct current stimulation (Tdcs) in treating unipolar and bipolar depression. J Affect Disord (2021) 280(Pt A):295–304. doi: 10.1016/j.jad.2020.11.030 [PubMed] [CrossRef] [Google Scholar]

59. Carrington EV, Evers J, Grossi U, Dinning PG, Scott SM, O'Connell PR, et al.. A systematic review of sacral nerve stimulation mechanisms in the treatment of fecal incontinence and constipation. Neurogastroenterol Motil (2014) 26(9):1222–37. doi: 10.1111/nmo.12388 [PubMed] [CrossRef] [Google Scholar]

60. Kibleur A, Pellissier S, Sinniger V, Robert J, Gronlier E, Clarencon D, et al.. Electroencephalographic correlates of low-frequency vagus nerve stimulation therapy for crohn's disease. Clin Neurophysiol (2018) 129(5):1041–6. doi: 10.1016/j.clinph.2018.02.127 [PubMed] [CrossRef] [Google Scholar]

61. Payne SC, Furness JB, Burns O, Sedo A, Hyakumura T, Shepherd RK, et al.. Anti-inflammatory effects of abdominal vagus nerve stimulation on experimental intestinal inflammation. Front Neurosci (2019) 13:418. doi: 10.3389/fnins.2019.00418 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Meroni E, Stakenborg N, Gomez-Pinilla PJ, De Hertogh G, Goverse G, Matteoli G, et al.. Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation. PloS One (2018) 13(5):e0197487. doi: 10.1371/journal.pone.0197487 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Jin H, Guo J, Liu J, Lyu B, Foreman RD, Yin J, et al.. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of tnbs-induced colitis. Am J Physiol Gastrointest Liver Physiol (2017) 313(3):G192–202. doi: 10.1152/ajpgi.00254.2016 [PubMed] [CrossRef] [Google Scholar]

64. Hu D, Wan L, Chen M, Caudle Y, LeSage G, Li Q, et al.. Essential role of il-10/Stat3 in chronic stress-induced immune suppression. Brain Behav Immun (2014) 36:118–27. doi: 10.1016/j.bbi.2013.10.016 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Li C, Li H, Jiang K, Li J, Gai X. Tlr4 signaling pathway in mouse Lewis lung cancer cells promotes the expression of tgf-Beta1 and il-10 and tumor cells migration. BioMed Mater Eng (2014) 24(1):869–75. doi: 10.3233/BME-130879 [PubMed] [CrossRef] [Google Scholar]

66. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev (2014) 13(1):3–10. doi: 10.1016/j.autrev.2013.06.004 [PubMed] [CrossRef] [Google Scholar]

67. Ray K. Immunopathogenesis of ibd: Current state of the art. Nat Rev Gastroenterol Hepatol (2017) 14(1):3. doi: 10.1038/nrgastro.2016.186 [PubMed] [CrossRef] [Google Scholar]

68. Soderholm JD, Yang PC, Ceponis P, Vohra A, Riddell R, Sherman PM, et al.. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology (2002) 123(4):1099–108. doi: 10.1053/gast.2002.36019 [PubMed] [CrossRef] [Google Scholar]

69. Mackey E, Ayyadurai S, Pohl CS, DC S, Li Y, Moeser AJ. Sexual dimorphism in the mast cell transcriptome and the pathophysiological responses to immunological and psychological stress. Biol Sex Differ (2016) 7:60. doi: 10.1186/s13293-016-0113-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Xu S, Wang X, Zhao J, Yang S, Dong L, Qin B. Gper-mediated, oestrogen-dependent visceral hypersensitivity in stressed rats is associated with mast cell tryptase and histamine expression. Fundam Clin Pharmacol (2020) 34(4):433–43. doi: 10.1111/fcp.12537 [PubMed] [CrossRef] [Google Scholar]

71. Lennon EM, Maharshak N, Elloumi H, Borst L, Plevy SE, Moeser AJ. Early life stress triggers persistent colonic barrier dysfunction and exacerbates colitis in adult il-10-/- mice. Inflammation Bowel Dis (2013) 19(4):712–9. doi: 10.1097/MIB.0b013e3182802a4e [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Mackos AR, Galley JD, Eubank TD, Easterling RS, Parry NM, Fox JG, et al.. Social stress-enhanced severity of citrobacter rodentium-induced colitis is Ccl2-dependent and attenuated by probiotic lactobacillus reuteri. Mucosal Immunol (2016) 9(2):515–26. doi: 10.1038/mi.2015.81 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Wang SL, Shao BZ, Zhao SB, Chang X, Wang P, Miao CY, et al.. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis (2019) 10(6):391. doi: 10.1038/s41419-019-1634-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Tang Y, Zhao L, Lei N, Chen P, Zhang Y. Crohn's disease patients with depression exhibit alterations in Monocyte/Macrophage phenotype and increased proinflammatory cytokine production. Dig Dis (2020) 38(3):211–21. doi: 10.1159/000501122 [PubMed] [CrossRef] [Google Scholar]

75. Zheng X, Hu M, Zang X, Fan Q, Liu Y, Che Y, et al.. Kynurenic Acid/Gpr35 axis restricts Nlrp3 inflammasome activation and exacerbates colitis in mice with social stress. Brain Behav Immun (2019) 79:244–55. doi: 10.1016/j.bbi.2019.02.009 [PubMed] [CrossRef] [Google Scholar]

76. Wu W, Sun M, Zhang HP, Chen T, Wu R, Liu C, et al.. Prolactin mediates psychological stress-induced dysfunction of regulatory T cells to facilitate intestinal inflammation. Gut (2014) 63(12):1883–92. doi: 10.1136/gutjnl-2013-306083 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Ambree O, Ruland C, Zwanzger P, Klotz L, Baune BT, Arolt V, et al.. Social defeat modulates T helper cell percentages in stress susceptible and resilient mice. Int J Mol Sci (2019) 20(14):3512. doi: 10.3390/ijms20143512 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Westfall S, Caracci F, Estill M, Frolinger T, Shen L, Pasinetti GM. Chronic stress-induced depression and anxiety priming modulated by gut-Brain-Axis immunity. Front Immunol (2021) 12:670500. doi: 10.3389/fimmu.2021.670500 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Westfall S, Caracci F, Zhao D, Wu QL, Frolinger T, Simon J, et al.. Microbiota metabolites modulate the T helper 17 to regulatory T cell (Th17/Treg) imbalance promoting resilience to stress-induced anxiety- and depressive-like behaviors. Brain Behav Immun (2021) 91:350–68. doi: 10.1016/j.bbi.2020.10.013 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Deng Q, Chen H, Liu Y, Xiao F, Guo L, Liu D, et al.. Psychological stress promotes neutrophil infiltration in colon tissue through adrenergic signaling in dss-induced colitis model. Brain Behav Immun (2016) 57:243–54. doi: 10.1016/j.bbi.2016.04.017 [PubMed] [CrossRef] [Google Scholar]

81. Ballout J, Diener M. Interactions between rat submucosal neurons and mast cells are modified by cytokines and neurotransmitters. Eur J Pharmacol (2019) 864:172713. doi: 10.1016/j.ejphar.2019.172713 [PubMed] [CrossRef] [Google Scholar]

82. De Zuani M, Dal Secco C, Frossi B. Mast cells at the crossroads of microbiota and ibd. Eur J Immunol (2018) 48(12):1929–37. doi: 10.1002/eji.201847504 [PubMed] [CrossRef] [Google Scholar]

83. Lissner D, Schumann M, Batra A, Kredel LI, Kuhl AA, Erben U, et al.. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in ibd. Inflammation Bowel Dis (2015) 21(6):1297–305. doi: 10.1097/MIB.0000000000000384 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Xu YW, Xing RX, Zhang WH, Li L, Wu Y, Hu J, et al.. Toxoplasma Rop16i/Iii ameliorated inflammatory bowel diseases Via inducing M2 phenotype of macrophages. World J Gastroenterol (2019) 25(45):6634–52. doi: 10.3748/wjg.v25.i45.6634 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Li MO, Rudensky AY. T Cell receptor signalling in the control of regulatory T cell differentiation and function. Nat Rev Immunol (2016) 16(4):220–33. doi: 10.1038/nri.2016.26 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, et al.. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and rorgammat(+) regulatory T cells and exacerbate colitis in mice. Immunity (2019) 50(1):212–24.e4. doi: 10.1016/j.immuni.2018.12.015 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Zheng K, Jia J, Yan S, Shen H, Zhu P, Yu J. Paeoniflorin ameliorates ulcerative colitis by modulating the dendritic cell-mediated Th17/Treg balance. Inflammopharmacology (2020) 28(6):1705–16. doi: 10.1007/s10787-020-00722-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Li J, Ueno A, Iacucci M, Fort Gasia M, Jijon HB, Panaccione R, et al.. Crossover subsets of Cd4(+) T lymphocytes in the intestinal lamina propria of patients with crohn's disease and ulcerative colitis. Dig Dis Sci (2017) 62(9):2357–68. doi: 10.1007/s10620-017-4596-9 [PubMed] [CrossRef] [Google Scholar]

89. Wang Y, Balvers MGJ, Hendriks HFJ, Wilpshaar T, van Heek T, Witkamp RF, et al.. Docosahexaenoyl serotonin emerges as most potent inhibitor of il-17 and ccl-20 released by blood mononuclear cells from a series of n-acyl serotonins identified in human intestinal tissue. Biochim Biophys Acta Mol Cell Biol Lipids (2017) 1862(9):823–31. doi: 10.1016/j.bbalip.2017.05.008 [PubMed] [CrossRef] [Google Scholar]

90. Poland M, Ten Klooster JP, Wang Z, Pieters R, Boekschoten M, Witkamp R, et al.. Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating il-23-Il-17 signaling in macrophages. Biochim Biophys Acta (2016) 1861(12 Pt A):2020–8. doi: 10.1016/j.bbalip.2016.09.012 [PubMed] [CrossRef] [Google Scholar]

91. Melnikov M, Sviridova A, Rogovskii V, Oleskin A, Boziki M, Bakirtzis C, et al.. Serotoninergic system targeting in multiple sclerosis: The prospective for pathogenetic therapy. Mult Scler Relat Disord (2021) 51:102888. doi: 10.1016/j.msard.2021.102888 [PubMed] [CrossRef] [Google Scholar]

92. Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the adaptive immune system in depression: Focus on T helper 17 cells. Pharmacol Rev (2022) 74(2):373–86. doi: 10.1124/pharmrev.120.000256 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Wan M, Ding L, Wang D, Han J, Gao P. Serotonin: A potent immune cell modulator in autoimmune diseases. Front Immunol (2020) 11:186. doi: 10.3389/fimmu.2020.00186 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S, Peters A, et al.. Induction and molecular signature of pathogenic Th17 cells. Nat Immunol (2012) 13(10):991–9. doi: 10.1038/ni.2416 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Burkett PR, Meyer zu Horste G, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest (2015) 125(6):2211–9. doi: 10.1172/JCI78085 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, et al.. Stat3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem (2007) 282(13):9358–63. doi: 10.1074/jbc.C600321200 [PubMed] [CrossRef] [Google Scholar]

97. Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, et al.. Interleukin-17 in chronic inflammatory neurological diseases. Front Immunol (2020) 11:947. doi: 10.3389/fimmu.2020.00947 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Chiu YC, Yang BH, Yang KC, Liu MN, Hu LY, Liou YJ, et al.. A study of tryptophan, kynurenine and serotonin transporter in first-episode drug-naive major depressive disorder. Psychiatry Res Neuroimaging (2021) 312:111296. doi: 10.1016/j.pscychresns.2021.111296 [PubMed] [CrossRef] [Google Scholar]

99. Moser T, Akgun K, Proschmann U, Sellner J, Ziemssen T. The role of Th17 cells in multiple sclerosis: Therapeutic implications. Autoimmun Rev (2020) 19(10):102647. doi: 10.1016/j.autrev.2020.102647 [PubMed] [CrossRef] [Google Scholar]

100. Schinocca C, Rizzo C, Fasano S, Grasso G, La Barbera L, Ciccia F, et al.. Role of the il-23/Il-17 pathway in rheumatic diseases: An overview. Front Immunol (2021) 12:637829. doi: 10.3389/fimmu.2021.637829 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, et al.. C-c chemokine receptor 6-regulated entry of Th-17 cells into the cns through the choroid plexus is required for the initiation of eae. Nat Immunol (2009) 10(5):514–23. doi: 10.1038/ni.1716 [PubMed] [CrossRef] [Google Scholar]

102. Balasa R, Barcutean L, Balasa A, Motataianu A, Roman-Filip C, Manu D. The action of Th17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol (2020) 81(5):237–43. doi: 10.1016/j.humimm.2020.02.009 [PubMed] [CrossRef] [Google Scholar]

103. Li N, Wang Q, Wang Y, Sun A, Lin Y, Jin Y, et al.. Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice Via the gut microbiota-Inflammation-Brain axis. Stress (2019) 22(5):592–602. doi: 10.1080/10253890.2019.1617267 [PubMed] [CrossRef] [Google Scholar]

104. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun (2011) 25(3):397–407. doi: 10.1016/j.bbi.2010.10.023 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front Immunol (2021) 12:578386. doi: 10.3389/fimmu.2021.578386 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Adamantidis A. How the gut talks to the brain. Science (2022) 376(6590):248–9. doi: 10.1126/science.abo7933 [PubMed] [CrossRef] [Google Scholar]

107. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al.. The microbiota-Gut-Brain axis. Physiol Rev (2019) 99(4):1877–2013. doi: 10.1152/physrev.00018.2018 [PubMed] [CrossRef] [Google Scholar]

108. Morais LH, HLt S, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol (2021) 19(4):241–55. doi: 10.1038/s41579-020-00460-0 [PubMed] [CrossRef] [Google Scholar]

109. Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by citrobacter rodentium. Infect Immun (2010) 78(4):1509–19. doi: 10.1128/IAI.00862-09 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Konturek PC, Konturek K, Brzozowski T, Wojcik D, Magierowski M, Targosz A, et al.. Participation of the intestinal microbiota in the mechanism of beneficial effect of treatment with synbiotic syngut on experimental colitis under stress conditions. J Physiol Pharmacol (2020) 71(3):329–42. doi: 10.26402/jpp.2020.3.03 [PubMed] [CrossRef] [Google Scholar]

111. Jang HM, Lee KE, Kim DH. The preventive and curative effects of lactobacillus reuteri Nk33 and bifidobacterium adolescentis Nk98 on immobilization stress-induced Anxiety/Depression and colitis in mice. Nutrients (2019) 11(4):819. doi: 10.3390/nu11040819 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Kim JK, Han SK, Joo MK, Kim DH. Buspirone alleviates anxiety, depression, and colitis; and modulates gut microbiota in mice. Sci Rep (2021) 11(1):6094. doi: 10.1038/s41598-021-85681-w [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Reber SO, Siebler PH, Donner NC, Morton JT, Smith DG, Kopelman JM, et al.. Immunization with a heat-killed preparation of the environmental bacterium mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci U.S.A. (2016) 113(22):E3130–9. doi: 10.1073/pnas.1600324113 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Watanabe Y, Arase S, Nagaoka N, Kawai M, Matsumoto S. Chronic psychological stress disrupted the composition of the murine colonic microbiota and accelerated a murine model of inflammatory bowel disease. PloS One (2016) 11(3):e0150559. doi: 10.1371/journal.pone.0150559 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Arase S, Watanabe Y, Setoyama H, Nagaoka N, Kawai M, Matsumoto S. Disturbance in the mucosa-associated commensal bacteria is associated with the exacerbation of chronic colitis by repeated psychological stress; is that the new target of probiotics? PloS One (2016) 11(8):e0160736. doi: 10.1371/journal.pone.0160736 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Sun Y, Xie R, Li L, Jin G, Zhou B, Huang H, et al.. Prenatal maternal stress exacerbates experimental colitis of offspring in adulthood. Front Immunol (2021) 12:700995. doi: 10.3389/fimmu.2021.700995 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

117. Zijlmans MA, Korpela K, Riksen-Walraven JM, de Vos WM, de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology (2015) 53:233–45. doi: 10.1016/j.psyneuen.2015.01.006 [PubMed] [CrossRef] [Google Scholar]

118. Yuan X, Chen B, Duan Z, Xia Z, Ding Y, Chen T, et al.. Depression and anxiety in patients with active ulcerative colitis: Crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes (2021) 13(1):1987779. doi: 10.1080/19490976.2021.1987779 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. He XX, Li YH, Yan PG, Meng XC, Chen CY, Li KM, et al.. Relationship between clinical features and intestinal microbiota in Chinese patients with ulcerative colitis. World J Gastroenterol (2021) 27(28):4722–37. doi: 10.3748/wjg.v27.i28.4722 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Wei L, Li Y, Tang W, Sun Q, Chen L, Wang X, et al.. Chronic unpredictable mild stress in rats induces colonic inflammation. Front Physiol (2019) 10:1228. doi: 10.3389/fphys.2019.01228 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: Mechanisms and clinical implications. Clin Gastroenterol Hepatol (2019) 17(2):322–32. doi: 10.1016/j.cgh.2018.10.002 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Elsenbruch S, Enck P. The stress concept in gastroenterology: From selye to today. F1000Res (2017) 6:2149. doi: 10.12688/f1000research.12435.1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, et al.. Gut microbiota in patients with irritable bowel syndrome-a systematic review. Gastroenterology (2019) 157(1):97–108. doi: 10.1053/j.gastro.2019.03.049 [PubMed] [CrossRef] [Google Scholar]

124. Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-Gut-Microbiome axis. Cell Mol Gastroenterol Hepatol (2018) 6(2):133–48. doi: 10.1016/j.jcmgh.2018.04.003 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-Gut-Brain axis. Neuropharmacology (2017) 112(Pt B):399–412. doi: 10.1016/j.neuropharm.2016.07.002 [PubMed] [CrossRef] [Google Scholar]

126. Jang HM, Kim JK, Joo MK, Shin YJ, Lee CK, Kim HJ, et al.. Transplantation of fecal microbiota from patients with inflammatory bowel disease and depression alters immune response and behavior in recipient mice. Sci Rep (2021) 11(1):20406. doi: 10.1038/s41598-021-00088-x [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Humbel F, Rieder JH, Franc Y, Juillerat P, Scharl M, Misselwitz B, et al.. Association of alterations in intestinal microbiota with impaired psychological function in patients with inflammatory bowel diseases in remission. Clin Gastroenterol Hepatol (2020) 18(9):2019–29.e11. doi: 10.1016/j.cgh.2019.09.022 [PubMed] [CrossRef] [Google Scholar]

128. Lo Presti A, Zorzi F, Del Chierico F, Altomare A, Cocca S, Avola A, et al.. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front Microbiol (2019) 10:1655. doi: 10.3389/fmicb.2019.01655 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

129. Kowalska-Duplaga K, Gosiewski T, Kapusta P, Sroka-Oleksiak A, Wedrychowicz A, Pieczarkowski S, et al.. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed crohn's disease. Sci Rep (2019) 9(1):18880. doi: 10.1038/s41598-019-55290-9 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Liu YJ, Tang B, Wang FC, Tang L, Lei YY, Luo Y, et al.. Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. Theranostics (2020) 10(12):5225–41. doi: 10.7150/thno.43716 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev (2017) 75(4):286–305. doi: 10.1093/nutrit/nuw067 [PubMed] [CrossRef] [Google Scholar]

132. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-Coa:Acetate coa-transferase gene. Environ Microbiol (2010) 12(2):304–14. doi: 10.1111/j.1462-2920.2009.02066.x [PubMed] [CrossRef] [Google Scholar]

133. Sokol H, Landman C, Seksik P, Berard L, Montil M, Nion-Larmurier I, et al.. Fecal microbiota transplantation to maintain remission in crohn's disease: A pilot randomized controlled study. Microbiome (2020) 8(1):12. doi: 10.1186/s40168-020-0792-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Kilinçarslan S, Evrensel A. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with inflammatory bowel disease: An experimental study. Actas Esp Psiquiatr (2020) 48(1):1–7. [PubMed] [Google Scholar]

135. Wang H, Braun C, Enck P. Effects of rifaximin on central responses to social stress-a pilot experiment. Neurotherapeutics (2018) 15(3):807–18. doi: 10.1007/s13311-018-0627-2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, O'Sullivan O, et al.. Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol (2018) 596(20):4923–44. doi: 10.1113/JP276431 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Kataoka AK, Nishida K, Takada M, Kawai M, Hayakawa HK, Suda K, et al.. Fermented milk containing lactobacillus casei strain shirota preserves the diversity of the gut microbiota and relieves abdominal dysfunction in healthy medical students exposed to academic stress. Appl Environ Microbiol (2016) 82(12):3649–58. doi: 10.1128/AEM.04134-15 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Yoo JW, Shin YJ, Ma X, Son YH, Jang HM, Lee CK, et al.. The alleviation of gut microbiota-induced depression and colitis in mice by anti-inflammatory probiotics Nk151, Nk173, and Nk175. Nutrients (2022) 14(10):2080. doi: 10.3390/nu14102080 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Fairbrass KM, Lovatt J, Barberio B, Yuan Y, Gracie DJ, Ford AC. Bidirectional brain-gut axis effects influence mood and prognosis in ibd: A systematic review and meta-analysis. Gut (2022) 71(9):1773–80. doi: 10.1136/gutjnl-2021-325985 [PubMed] [CrossRef] [Google Scholar]

140. Bhamre R, Sawrav S, Adarkar S, Sakaria R, S JB. Psychiatric comorbidities in patients with inflammatory bowel disease. Indian J Gastroenterol (2018) 37(4):307–12. doi: 10.1007/s12664-018-0870-9 [PubMed] [CrossRef] [Google Scholar]

141. Byrne G, Rosenfeld G, Leung Y, Qian H, Raudzus J, Nunez C, et al.. Prevalence of anxiety and depression in patients with inflammatory bowel disease. Can J Gastroenterol Hepatol (2017) 2017:6496727. doi: 10.1155/2017/6496727 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

142. Vigano CA, Beltrami MM, Bosi MF, Zanello R, Valtorta M, Maconi G. Alexithymia and psychopathology in patients suffering from inflammatory bowel disease: Arising differences and correlations to tailoring therapeutic strategies. Front Psychiatry (2018) 9:324. doi: 10.3389/fpsyt.2018.00324 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

143. Frenkel S, Bernstein CN, Sargent M, Jiang W, Kuang Q, Xu W, et al.. Copy number variation-based gene set analysis reveals cytokine signalling pathways associated with psychiatric comorbidity in patients with inflammatory bowel disease. Genomics (2020) 112(1):683–93. doi: 10.1016/j.ygeno.2019.05.001 [PubMed] [CrossRef] [Google Scholar]

144. Abautret-Daly A, Dempsey E, Riestra S, de Francisco-Garcia R, Parra-Blanco A, Rodrigo L, et al.. Association between psychological measures with inflammatory anddisease-related markers of inflammatory bowel disease. Int J Psychiatry Clin Pract (2017) 21(3):221–30. doi: 10.1080/13651501.2017.1306081 [PubMed] [CrossRef] [Google Scholar]

145. Craig CF, Filippone RT, Stavely R, Bornstein JC, Apostolopoulos V, Nurgali K. Neuroinflammation as an etiological trigger for depression comorbid with inflammatory bowel disease. J Neuroinflamm (2022) 19(1):4. doi: 10.1186/s12974-021-02354-1 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

146. Wang K, Yuan CP, Wang W, Yang ZQ, Cui W, Mu LZ, et al.. Expression of interleukin 6 in brain and colon of rats with tnbs-induced colitis. World J Gastroenterol (2010) 16(18):2252–9. doi: 10.3748/wjg.v16.i18.2252 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and tnf-A production mediate altered cns excitability following peripheral inflammation. Proc Natl Acad Sci U.S.A. (2008) 105(44):17151–6. doi: 10.1073/pnas.0806682105 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Jang SE, Lim SM, Jeong JJ, Jang HM, Lee HJ, Han MJ, et al.. Gastrointestinal inflammation by gut microbiota disturbance induces memory impairment in mice. Mucosal Immunol (2018) 11(2):369–79. doi: 10.1038/mi.2017.49 [PubMed] [CrossRef] [Google Scholar]

149. Zonis S, Pechnick RN, Ljubimov VA, Mahgerefteh M, Wawrowsky K, Michelsen KS, et al.. Chronic intestinal inflammation alters hippocampal neurogenesis. J Neuroinflamm (2015) 12:65. doi: 10.1186/s12974-015-0281-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Takahashi K, Nakagawasai O, Nemoto W, Odaira T, Sakuma W, Onogi H, et al.. Effect of enterococcus faecalis 2001 on colitis and depressive-like behavior in dextran sulfate sodium-treated mice: Involvement of the brain-gut axis. J Neuroinflamm (2019) 16(1):201. doi: 10.1186/s12974-019-1580-7 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Dempsey E, Abautret-Daly A, Docherty NG, Medina C, Harkin A. Persistent central inflammation and region specific cellular activation accompany depression- and anxiety-like behaviours during the resolution phase of experimental colitis. Brain Behav Immun (2019) 80:616–32. doi: 10.1016/j.bbi.2019.05.007 [PubMed] [CrossRef] [Google Scholar]

152. Reichmann F, Hassan AM, Farzi A, Jain P, Schuligoi R, Holzer P. Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci Rep (2015) 5:9970. doi: 10.1038/srep09970 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Zhou F, Jiang H, Kong N, Lin J, Zhang F, Mai T, et al.. Electroacupuncture attenuated anxiety and depression-like behavior Via inhibition of hippocampal inflammatory response and metabolic disorders in tnbs-induced ibd rats. Oxid Med Cell Longev (2022) 2022:8295580. doi: 10.1155/2022/8295580 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Haj-Mirzaian A, Amiri S, Amini-Khoei H, Hosseini MJ, Haj-Mirzaian A, Momeny M, et al.. Anxiety- and depressive-like behaviors are associated with altered hippocampal energy and inflammatory status in a mouse model of crohn's disease. Neuroscience (2017) 366:124–37. doi: 10.1016/j.neuroscience.2017.10.023 [PubMed] [CrossRef] [Google Scholar]

155. Heydarpour P, Rahimian R, Fakhfouri G, Khoshkish S, Fakhraei N, Salehi-Sadaghiani M, et al.. Behavioral despair associated with a mouse model of crohn's disease: Role of nitric oxide pathway. Prog Neuropsychopharmacol Biol Psychiatry (2016) 64:131–41. doi: 10.1016/j.pnpbp.2015.08.004 [PubMed] [CrossRef] [Google Scholar]

156. Han Y, Zhao T, Cheng X, Zhao M, Gong SH, Zhao YQ, et al.. Cortical inflammation is increased in a dss-induced colitis mouse model. Neurosci Bull (2018) 34(6):9. doi: 10.1007/s12264-018-0288-5 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Lv WJ, Liu C, Yu LZ, Zhou JH, Li Y, Xiong Y, et al.. Melatonin alleviates neuroinflammation and metabolic disorder in dss-induced depression rats. Oxid Med Cell Longev (2020) 2020:1241894. doi: 10.1155/2020/1241894 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Zhang J, He H, Qiao Y, Zhou T, He H, Yi S, et al.. Priming of microglia with ifn-gamma impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Glia (2020) 68(12):2674–92. doi: 10.1002/glia.23878 [PubMed] [CrossRef] [Google Scholar]

159. Kwidzinski E, Bechmann I. Ido expression in the brain: A double-edged sword. J Mol Med (Berl) (2007) 85(12):1351–9. doi: 10.1007/s00109-007-0229-7 [PubMed] [CrossRef] [Google Scholar]

160. Carloni S, Bertocchi A, Mancinelli S, Bellini M, Erreni M, Borreca A, et al.et al.. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science (2021) 374(6566):439–48. doi: 10.1126/science.abc6108 [PubMed] [CrossRef] [Google Scholar]

161. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe (2018) 23(6):716–24. doi: 10.1016/j.chom.2018.05.003 [PubMed] [CrossRef] [Google Scholar]

162. Skrobisz K, Piotrowicz G, Drozdowska A, Markiet K, Sabisz A, Naumczyk P, et al.. Use of functional magnetic resonance imaging in patients with irritable bowel syndrome and functional dyspepsia. Prz Gastroenterol (2019) 14(3):163–7. doi: 10.5114/pg.2019.88163 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Thomann AK, Reindl W, Wustenberg T, Kmuche D, Ebert MP, Szabo K, et al.. Aberrant brain structural Large-scale connectome in crohn's disease. Neurogastroenterol Motil (2019) 31(6):e13593. doi: 10.1111/nmo.13593 [PubMed] [CrossRef] [Google Scholar]

164. Thomann AK, Schmitgen MM, Kmuche D, Ebert MP, Thomann PA, Szabo K, et al.. Exploring joint patterns of brain structure and function in inflammatory bowel diseases using multimodal data fusion. Neurogastroenterol Motil (2021) 33(6):e14078. doi: 10.1111/nmo.14078 [PubMed] [CrossRef] [Google Scholar]

165. Tillisch K, Labus JS. Neuroimaging the microbiome-Gut-Brain axis. Adv Exp Med Biol (2014) 817:405–16. doi: 10.1007/978-1-4939-0897-4_18 [PubMed] [CrossRef] [Google Scholar]

166. Agostini A, Filippini N, Cevolani D, Agati R, Leoni C, Tambasco R, et al.. Brain functional changes in patients with ulcerative colitis: A functional magnetic resonance imaging study on emotional processing. Inflammation Bowel Dis (2011) 17(8):1769–77. doi: 10.1002/ibd.21549 [PubMed] [CrossRef] [Google Scholar]

167. Zhang S, Chen F, Wu J, Liu C, Yang G, Piao R, et al.. Regional Gray matter volume changes in brains of patients with ulcerative colitis. Inflammation Bowel Dis (2022) 28(4):599–610. doi: 10.1093/ibd/izab252 [PubMed] [CrossRef] [Google Scholar]

168. Goodyear BG, Heidari F, Ingram RJM, Cortese F, Sharifi N, Kaplan GG, et al.. Multimodal brain mri of deep Gray matter changes associated with inflammatory bowel disease. Inflammation Bowel Dis (2022):izac089. doi: 10.1093/ibd/izac089 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Wang H, Labus JS, Griffin F, Gupta A, Bhatt RR, Sauk JS, et al.. Functional brain rewiring and altered cortical stability in ulcerative colitis. Mol Psychiatry (2022) 27(3):1792–804. doi: 10.1038/s41380-021-01421-6 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Bao CH, Liu P, Liu HR, Wu LY, Shi Y, Chen WF, et al.. Alterations in brain grey matter structures in patients with crohn's disease and their correlation with psychological distress. J Crohns Colitis (2015) 9(7):532–40. doi: 10.1093/ecco-jcc/jjv057 [PubMed] [CrossRef] [Google Scholar]

171. Agostini A, Ballotta D, Righi S, Moretti M, Bertani A, Scarcelli A, et al.. Stress and brain functional changes in patients with crohn's disease: A functional magnetic resonance imaging study. Neurogastroenterol Motil (2017) 29(10):1–10. doi: 10.1111/nmo.13108 [PubMed] [CrossRef] [Google Scholar]

172. Rubio A, Pellissier S, Van Oudenhove L, Ly HG, Dupont P, Tack J, et al.. Brain responses to uncertainty about upcoming rectal discomfort in quiescent crohn's disease - a fmri study. Neurogastroenterol Motil (2016) 28(9):1419–32. doi: 10.1111/nmo.12844 [PubMed] [CrossRef] [Google Scholar]

173. Fan Y, Bao C, Wei Y, Wu J, Zhao Y, Zeng X, et al.. Altered functional connectivity of the amygdala in crohn's disease. Brain Imaging Behav (2020) 14(6):2097–106. doi: 10.1007/s11682-019-00159-8 [PubMed] [CrossRef] [Google Scholar]

174. Kornelsen J, Wilson A, Labus JS, Witges K, Mayer EA, Bernstein CN. Brain resting-state network alterations associated with crohn's disease. Front Neurol (2020) 11:48. doi: 10.3389/fneur.2020.00048 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Yeung AWK. Structural and functional changes in the brain of patients with crohn's disease: An activation likelihood estimation meta-analysis. Brain Imaging Behav (2021) 15(2):807–18. doi: 10.1007/s11682-020-00291-w [PubMed] [CrossRef] [Google Scholar]

176. Thomann AK, Griebe M, Thomann PA, Hirjak D, Ebert MP, Szabo K, et al.. Intrinsic neural network dysfunction in quiescent crohn's disease. Sci Rep (2017) 7(1):11579. doi: 10.1038/s41598-017-11792-y [PMC free article] [PubMed] [CrossRef] [Google Scholar]

177. Bao C, Liu P, Liu H, Jin X, Shi Y, Wu L, et al.. Difference in regional neural fluctuations and functional connectivity in crohn's disease: A resting-state functional mri study. Brain Imaging Behav (2018) 12(6):1795–803. doi: 10.1007/s11682-018-9850-z [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Gray MA, Chao CY, Staudacher HM, Kolosky NA, Talley NJ, Holtmann G. Anti-tnfalpha therapy in ibd alters brain activity reflecting visceral sensory function and cognitive-affective biases. PloS One (2018) 13(3):e0193542. doi: 10.1371/journal.pone.0193542 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Black CJ, Thakur ER, Houghton LA, Quigley EMM, Moayyedi P, Ford AC. Efficacy of psychological therapies for irritable bowel syndrome: Systematic review and network meta-analysis. Gut (2020) 69(8):1441–51. doi: 10.1136/gutjnl-2020-321191 [PubMed] [CrossRef] [Google Scholar]

180. Farver-Vestergaard I, Jacobsen D, Zachariae R. Efficacy of psychosocial interventions on psychological and physical health outcomes in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Psychother Psychosom (2015) 84(1):37–50. doi: 10.1159/000367635 [PubMed] [CrossRef] [Google Scholar]

181. Hanlon I, Hewitt C, Bell K, Phillips A, Mikocka-Walus A. Systematic review with meta-analysis: Online psychological interventions for mental and physical health outcomes in gastrointestinal disorders including irritable bowel syndrome and inflammatory bowel disease. Aliment Pharmacol Ther (2018) 48(3):244–59. doi: 10.1111/apt.14840 [PubMed] [CrossRef] [Google Scholar]

182. Jiang Y, Shorey S, Seah B, Chan WX, Tam WWS, Wang W. The effectiveness of psychological interventions on self-care, psychological and health outcomes in patients with chronic heart failure-a systematic review and meta-analysis. Int J Nurs Stud (2018) 78:16–25. doi: 10.1016/j.ijnurstu.2017.08.006 [PubMed] [CrossRef] [Google Scholar]

183. Prothero L, Barley E, Galloway J, Georgopoulou S, Sturt J. The evidence base for psychological interventions for rheumatoid arthritis: A systematic review of reviews. Int J Nurs Stud (2018) 82:20–9. doi: 10.1016/j.ijnurstu.2018.03.008 [PubMed] [CrossRef] [Google Scholar]

184. Wynne B, McHugh L, Gao W, Keegan D, Byrne K, Rowan C, et al.. Acceptance and commitment therapy reduces psychological stress in patients with inflammatory bowel diseases. Gastroenterology (2019) 156(4):935–45.e1. doi: 10.1053/j.gastro.2018.11.030 [PubMed] [CrossRef] [Google Scholar]

185. Li C, Hou Z, Liu Y, Ji Y, Xie L. Cognitive-behavioural therapy in patients with inflammatory bowel diseases: A systematic review and meta-analysis. Int J Nurs Pract (2019) 25(1):e12699. doi: 10.1111/ijn.12699 [PubMed] [CrossRef] [Google Scholar]

186. Jordan C, Hayee B, Chalder T. Cognitive behaviour therapy for distress in people with inflammatory bowel disease: A benchmarking study. Clin Psychol Psychother (2019) 26(1):14–23. doi: 10.1002/cpp.2326 [PubMed] [CrossRef] [Google Scholar]

187. Hunt MG, Loftus P, Accardo M, Keenan M, Cohen L, Osterman MT. Self-help cognitive behavioral therapy improves health-related quality of life for inflammatory bowel disease patients: A randomized controlled effectiveness trial. J Clin Psychol Med Settings (2020) 27(3):467–79. doi: 10.1007/s10880-019-09621-7 [PubMed] [CrossRef] [Google Scholar]

188. Bennebroek Evertsz F, Sprangers MAG, Sitnikova K, Stokkers PCF, Ponsioen CY, Bartelsman J, et al.. Effectiveness of cognitive-behavioral therapy on quality of life, anxiety, and depressive symptoms among patients with inflammatory bowel disease: A multicenter randomized controlled trial. J Consult Clin Psychol (2017) 85(9):918–25. doi: 10.1037/ccp0000227 [PubMed] [CrossRef] [Google Scholar]

189. Dubinsky MC, Dotan I, Rubin DT, Bernauer M, Patel D, Cheung R, et al.. Burden of comorbid anxiety and depression in patients with inflammatory bowel disease: A systematic literature review. Expert Rev Gastroenterol Hepatol (2021) 15(9):985–97. doi: 10.1080/17474124.2021.1911644 [PubMed] [CrossRef] [Google Scholar]

190. Szigethy E, Youk AO, Gonzalez-Heydrich J, Bujoreanu SI, Weisz J, Fairclough D, et al.. Effect of 2 psychotherapies on depression and disease activity in pediatric crohn's disease. Inflammation Bowel Dis (2015) 21(6):1321–8. doi: 10.1097/MIB.0000000000000358 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

191. Giuliani C. The flavonoid quercetin induces ap-1 activation in frtl-5 thyroid cells. Antioxid (Basel) (2019) 8(5):112. doi: 10.3390/antiox8050112 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Chen J, Chen X, Sun Y, Xie Y, Wang X, Li R, et al.. The physiological and psychological effects of cognitive behavior therapy on patients with inflammatory bowel disease before covid-19: A systematic review. BMC Gastroenterol (2021) 21(1):469. doi: 10.1186/s12876-021-02003-0 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

193. Hood MM, Jedel S. Mindfulness-based interventions in inflammatory bowel disease. Gastroenterol Clin North Am (2017) 46(4):859–74. doi: 10.1016/j.gtc.2017.08.008 [PubMed] [CrossRef] [Google Scholar]

194. Gonzalez-Moret R, Cebolla A, Cortes X, Banos RM, Navarrete J, de la Rubia JE, et al.. The effect of a mindfulness-based therapy on different biomarkers among patients with inflammatory bowel disease: A randomised controlled trial. Sci Rep (2020) 10(1):6071. doi: 10.1038/s41598-020-63168-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

195. Berrill JW, Sadlier M, Hood K, Green JT. Mindfulness-based therapy for inflammatory bowel disease patients with functional abdominal symptoms or high perceived stress levels. J Crohns Colitis (2014) 8(9):945–55. doi: 10.1016/j.crohns.2014.01.018 [PubMed] [CrossRef] [Google Scholar]

196. Ewais T, Begun J, Kenny M, Hay K, Houldin E, Chuang KH, et al.. Mindfulness based cognitive therapy for youth with inflammatory bowel disease and depression - findings from a pilot randomised controlled trial. J Psychosom Res (2021) 149:110594. doi: 10.1016/j.jpsychores.2021.110594 [PubMed] [CrossRef] [Google Scholar]

197. Jedel S, Hoffman A, Merriman P, Swanson B, Voigt R, Rajan KB, et al.. A randomized controlled trial of mindfulness-based stress reduction to prevent flare-up in patients with inactive ulcerative colitis. Digestion (2014) 89(2):142–55. doi: 10.1159/000356316 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

198. Goren G, Schwartz D, Friger M, Banai H, Sergienko R, Regev S, et al.. Randomized controlled trial of cognitive-behavioral and mindfulness-based stress reduction on the quality of life of patients with crohn disease. Inflammation Bowel Dis (2022) 28(3):393–408. doi: 10.1093/ibd/izab083 [PubMed] [CrossRef] [Google Scholar]

199. Keefer L, Taft TH, Kiebles JL, Martinovich Z, Barrett TA, Palsson OS. Gut-directed hypnotherapy significantly augments clinical remission in quiescent ulcerative colitis. Aliment Pharmacol Ther (2013) 38(7):761–71. doi: 10.1111/apt.12449 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

200. Danese S, Solitano V, Jairath V, Peyrin-Biroulet L. The future of drug development for inflammatory bowel disease: The need to act (Advanced combination treatment). Gut (2022) 14:2022–327025. doi: 10.1136/gutjnl-2022-327025 [PubMed] [CrossRef] [Google Scholar]

201. Gavrilescu O, Prelipcean CC, Dranga M, Soponaru C, Mihai C. The specialized educational and psychological counseling in inflammatory bowel disease patients - a target or a challenge? Turk J Gastroenterol (2020) 31(11):760–6. doi: 10.5152/tjg.2020.19669 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

202. Gerbarg PL, Jacob VE, Stevens L, Bosworth BP, Chabouni F, DeFilippis EM, et al.. The effect of breathing, movement, and meditation on psychological and physical symptoms and inflammatory biomarkers in inflammatory bowel disease: A randomized controlled trial. Inflammation Bowel Dis (2015) 21(12):2886–96. doi: 10.1097/MIB.0000000000000568 [PubMed] [CrossRef] [Google Scholar]

203. Torres J, Ellul P, Langhorst J, Mikocka-Walus A, Barreiro-de Acosta M, Basnayake C, et al.. European Crohn's and colitis organisation topical review on complementary medicine and psychotherapy in inflammatory bowel disease. J Crohns Colitis (2019) 13(6):673–85e. doi: 10.1093/ecco-jcc/jjz051 [PubMed] [CrossRef] [Google Scholar]

204. Regueiro M, Greer JB, Szigethy E. Etiology and treatment of pain and psychosocial issues in patients with inflammatory bowel diseases. Gastroenterology (2017) 152(2):430–9.e4. doi: 10.1053/j.gastro.2016.10.036 [PubMed] [CrossRef] [Google Scholar]

205. Klag T, Mazurak N, Fantasia L, Schwille-Kiuntke J, Kirschniak A, Falch C, et al.. High demand for psychotherapy in patients with inflammatory bowel disease. Inflammation Bowel Dis (2017) 23(10):1796–802. doi: 10.1097/MIB.0000000000001216 [PubMed] [CrossRef] [Google Scholar]

206. Kutschera M, Waldho*r T, Groechenig H, Haas T, Wenzl H, Steiner P, et al.. The need for psychological and psychotherapeutic interventions in Austrian patients with inflammatory bowel disease. Z für Gastroenterol (2020) 58(05):e76. doi: 10.1055/s-0040-1712247 [CrossRef] [Google Scholar]

207. Knowles SR, Keefer L, Wilding H, Hewitt C, Graff LA, Mikocka-Walus A. Quality of life in inflammatory bowel disease: A systematic review and meta-Analyses-Part ii. Inflammation Bowel Dis (2018) 24(5):966–76. doi: 10.1093/ibd/izy015 [PubMed] [CrossRef] [Google Scholar]

208. Leone D, Gilardi D, Corro BE, Menichetti J, Vegni E, Correale C, et al.. Psychological characteristics of inflammatory bowel disease patients: A comparison between active and nonactive patients. Inflammation Bowel Dis (2019) 25(8):1399–407. doi: 10.1093/ibd/izy400 [PubMed] [CrossRef] [Google Scholar]

209. Daghaghzadeh H, Naji F, Afshar H, Sharbafchi MR, Awat Feizi3 MM, Tabatabaeeyan M, et al.. Efficacy of duloxetine add on in treatment of inflammatory bowel disease patients: A double-blind controlled study. J Res Med Sci (2015) 20(6):595–601. doi: 10.4103/1735-1995.165969 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Gorard DA, Libby GW, Farthing MJ. Influence of antidepressants on whole gut and orocaecal transit times in health and irritable bowel syndrome. Aliment Pharmacol Ther (1994) 8(2):159–66. doi: 10.1111/j.1365-2036.1994.tb00273.x [PubMed] [CrossRef] [Google Scholar]

211. Iskandar HN, Cassell B, Kanuri N, Gyawali CP, Gutierrez A, Dassopoulos T, et al.. Tricyclic antidepressants for management of residual symptoms in inflammatory bowel disease. J Clin Gastroenterol (2014) 48(5):423–9. doi: 10.1097/MCG.0000000000000049 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Varghese AK, Verdu EF, Bercik P, Khan WI, Blennerhassett PA, Szechtman H, et al.. Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology (2006) 130(6):1743–53. doi: 10.1053/j.gastro.2006.02.007 [PubMed] [CrossRef] [Google Scholar]

213. Guemei AA, El Din NM, Baraka AM, El Said Darwish I. Do desipramine [10,11-Dihydro-5-[3-(Methylamino) propyl]-5h-Dibenz[B,F]Azepine monohydrochloride] and fluoxetine [N-Methyl-3-Phenyl-3-[4-(Trifluoromethyl)Phenoxy]-Propan-1-Amine] ameliorate the extent of colonic damage induced by acetic acid in rats? J Pharmacol Exp Ther (2008) 327(3):846–50. doi: 10.1124/jpet.108.141259 [PubMed] [CrossRef] [Google Scholar]

214. Mikocka-Walus A, Hughes PA, Bampton P, Gordon A, Campaniello MA, Mavrangelos C, et al.. Fluoxetine for maintenance of remission and to improve quality of life in patients with crohn's disease: A pilot randomized placebo-controlled trial. J Crohns Colitis (2017) 11(4):509–14. doi: 10.1093/ecco-jcc/jjw165 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Wichniak A, Wierzbicka A, Walecka M, Jernajczyk W. Effects of antidepressants on sleep. Curr Psychiatry Rep (2017) 19(9):63. doi: 10.1007/s11920-017-0816-4 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Ruepert .L, Quartero AO, de Wit NJ, Heijden GJvd, Rubin G, Muris JW. Bulking agents, antispasmodics and antidepressants for the treatment of irritable bowel syndrome (Review). Cochrane Database Syst Rev (2011) 10(8):CD003460. doi: 10.1002/14651858.CD003460.pub3 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Mikocka-Walus A, Ford AC, Drossman DA. Antidepressants in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol (2020) 17(3):184–92. doi: 10.1038/s41575-019-0259-y [PubMed] [CrossRef] [Google Scholar]

218. Mikocka-Walus A, Prady SL, Pollok J, Esterman AJ, Gordon AL, Knowles S, et al.. Adjuvant therapy with antidepressants for the management of inflammatory bowel disease. Cochrane Database Syst Rev (2019) 4:CD012680. doi: 10.1002/14651858.CD012680.pub2 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

219. Frolkis AD, Vallerand IA, Shaheen AA, Lowerison MW, Swain MG, Barnabe C, et al.. Depression increases the risk of inflammatory bowel disease, which may be mitigated by the use of antidepressants in the treatment of depression. Gut (2019) 68(9):1606–12. doi: 10.1136/gutjnl-2018-317182 [PubMed] [CrossRef] [Google Scholar]

220. Hall BJ, Hamlin PJ, Gracie DJ, Ford AC. The effect of antidepressants on the course of inflammatory bowel disease. Can J Gastroenterol Hepatol (2018) 2018:2047242. doi: 10.1155/2018/2047242 [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Macer BJ, Prady SL, Mikocka-Walus A. Antidepressants in inflammatory bowel disease: A systematic review. Inflammation Bowel Dis (2017) 23(4):534–50. doi: 10.1097/MIB.0000000000001059 [PubMed] [CrossRef] [Google Scholar]

222. Zhang XF, Guan XX, Tang YJ, Sun JF, Wang XK, Wang WD, et al.. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: A systematic review and meta-analysis. Eur J Nutr (2021) 60(5):2855–75. doi: 10.1007/s00394-021-02503-5 [PubMed] [CrossRef] [Google Scholar]

223. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol (2020) 17(4):223–37. doi: 10.1038/s41575-019-0258-z [PubMed] [CrossRef] [Google Scholar]

Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications (2024)

FAQs

What is the role of psychological stress in inflammatory bowel disease? ›

Chronic psychological stress disturbs intestinal immune function during IBD. The dysfunction of innate and adaptive immune pathways is the primary cause of intestinal inflammation in patients with IBD (10, 64, 65).

What is the life expectancy of someone with IBD? ›

However, people living with IBDs like Crohn's have a shorter average life expectancy than those who don't. According to the study: Females with IBD may live from 6.6 to 8.1 years fewer than females without IBD. Males with IBD may live from 5.0 to 6.1 years fewer than males without IBD.

What foods should you avoid with inflammatory bowel disease? ›

Follow a low residue diet to relieve abdominal pain and diarrhea. If you have strictures, it is especially important to avoid nuts, seeds, beans and kernels. Avoid foods that may increase stool output such as fresh fruits and vegetables, prunes and caffeinated beverages. Cold foods may help reduce diarrhea.

What is the trigger of inflammatory bowel disease? ›

Common IBD triggers include: Antibiotics. NSAIDS (nonsteroidal anti-inflammatory drugs). Smoking cigarettes.

What are the psychological issues with inflammatory bowel disease? ›

Many people with IBD become worried and anxious about their symptoms. Other emotions commonly reported include embarrassment, shame, guilt, frustration, anger, worthlessness and hopelessness. Approximately one-third of people with IBD experience high levels of anxiety and/or depression.

Is IBD a permanent disability? ›

In the case of IBD, the disease does go through periods of active disease and remission, so short-term disability is possible. However, when the reason for disability is a permanent extra-intestinal condition or as a result of surgeries (such as short bowel syndrome), the disability may be long-term or indefinite.

What can happen if IBD is left untreated? ›

One risk of not treating IBD is a higher frequency of flare-ups (of inflammation and symptoms) and progression of the inflammation to irreversible bowel damage. Left untreated, complications of IBD can include: Arthritis. Skin conditions.

Is inflammatory bowel disease lifelong? ›

Medicines can reduce inflammation and increase the number and length of periods of remission, but there is no cure. How long will IBD last? IBD is a lifelong (chronic) condition. A few patients find their disease becomes milder (“burned out”) after age 60, but many do not.

Are eggs bad for IBD? ›

IBD Remission Diet

IBD medications tend to be more effective in well-nourished individuals, so try to include the following in your diet every day: 8-10 glasses of water. High fiber carbohydrates (oat bran, legumes, barley) Proteins like lean meats, fish, eggs, nuts, poultry and soy.

Can you feel when your intestines are inflamed? ›

Symptoms include: Diarrhea (often loose and watery with Crohn's disease or bloody with ulcerative colitis) Severe or chronic cramping pain in the abdomen. Loss of appetite, leading to weight loss.

What can I drink for inflamed intestines? ›

It is advisable to drink water instead of fruit juices, soft drinks, alcohol, and caffeinated beverages, such as coffee or tea.

What foods heal colon inflammation? ›

However, below are some examples of foods usually found in an anti-inflammatory diet that can help give your colon the boost it needs [2, 3, 4, 5, 6]: Vegetables: zucchini, green beans, carrots, lettuce, potatoes, bok choy, cucumber. Fruits: cantaloupe, kiwi, oranges, pineapples.

What are the psychological factors associated with inflammatory bowel disease? ›

Patients often suffer from psychosocial distur-bances such as anxiety and depression or further mental impairment during the active period of the disease. Byrne et al. found a 25.8% prevalence of depression and a 21.2% prevalence of anxiety among IBD patients, which was also associated with disease activity.

How does stress affect inflammatory disease? ›

Intense stress over-activates the immune system, leading to the imbalance between inflammation and anti-inflammation.

Can IBD be triggered by stress? ›

Furthermore, in some clinical studies, stress, anxiety, and depression have been considered triggers of IBD relapse and clinical deterioration (20, 21).

What is the role of psychological support in IBS? ›

Recent meta analyses have found that CBT for IBS is highly effective in improving bowel symptoms, quality of life, and psychological distress and that these effects persist beyond the treatment phase and into long-term follow-up.

Top Articles
Latest Posts
Article information

Author: Foster Heidenreich CPA

Last Updated:

Views: 5952

Rating: 4.6 / 5 (56 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Foster Heidenreich CPA

Birthday: 1995-01-14

Address: 55021 Usha Garden, North Larisa, DE 19209

Phone: +6812240846623

Job: Corporate Healthcare Strategist

Hobby: Singing, Listening to music, Rafting, LARPing, Gardening, Quilting, Rappelling

Introduction: My name is Foster Heidenreich CPA, I am a delightful, quaint, glorious, quaint, faithful, enchanting, fine person who loves writing and wants to share my knowledge and understanding with you.